41 research outputs found

    Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes

    Get PDF
    Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish (Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent a significant population bottleneck roughly 1 Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species

    Activity of Genes with Functions in Human Williams-Beuren Syndrome Is Impacted by Mobile Element Insertions in the Gray Wolf Genome.

    Get PDF
    In canines, transposon dynamics have been associated with a hyper-social behavioral syndrome, although the functional mechanism has yet to be described. We investigate the epigenetic and transcriptional consequences of these behavior-associated mobile element insertions (MEIs) in dogs and Yellowstone gray wolves. We posit that the transposons themselves may not be the causative feature; rather, their transcriptional regulation may exert the functional impact. We survey four outlier transposons associated with hyper-sociability, with the expectation that they are targeted for epigenetic silencing. We predict hyper-methylation of MEIs, suggestive that the epigenetic silencing of and not the MEIs themselves may be driving dysregulation of nearby genes. We found that transposon-derived sequences are significantly hyper-methylated, regardless of their copy number or species. Further, we have assessed transcriptome sequence data and found evidence that MEIs impact the expression levels of six genes (WBSCR17, LIMK1, GTF2I, WBSCR27, BAZ1B, and BCL7B), all of which have known roles in human Williams-Beuren syndrome due to changes in copy number, typically hemizygosity. Although further evidence is needed, our results suggest that a few insertions alter local expression at multiple genes, likely through a cis-regulatory mechanism that excludes proximal methylation

    Global evaluation of taxonomic relationships and admixture within the Culex pipiens complex of mosquitoes

    Get PDF
    Within the Culex pipiens mosquito complex, there are six contemporarily recognized taxa: Cx. quinquefasciatus, Cx. pipiens f. pipiens, Cx. pipiens f. molestus, Cx. pipiens pallens, Cx. australicus and Cx. globocoxitus. Many phylogenetic aspects within this complex have eluded resolution, such as the relationship of the two Australian endemic taxa to the other four members, as well as the evolutionary origins and taxonomic status of Cx. pipiens pallens and Cx. pipiens f. molestus. Ultimately, insights into lineage relationships within the complex will facilitate a better understanding of differential disease transmission by these mosquitoes. To this end, we have combined publicly available data with our own sequencing efforts to examine these questions.https://doi.org/10.1186/s13071-020-3879-

    Sex Chromosome Mosaicism and Hybrid Speciation among Tiger Swallowtail Butterflies

    Get PDF
    Hybrid speciation, or the formation of a daughter species due to interbreeding between two parental species, is a potentially important means of diversification, because it generates new forms from existing variation. However, factors responsible for the origin and maintenance of hybrid species are largely unknown. Here we show that the North American butterfly Papilio appalachiensis is a hybrid species, with genomic admixture from Papilio glaucus and Papilio canadensis. Papilio appalachiensis has a mosaic phenotype, which is hypothesized to be the result of combining sex-linked traits from P. glaucus and P. canadensis. We show that P. appalachiensis' Z-linked genes associated with a cooler thermal habitat were inherited from P. canadensis, whereas its W-linked mimicry and mitochondrial DNA were inherited from P. glaucus. Furthermore, genome-wide AFLP markers showed nearly equal contributions from each parental species in the origin of P. appalachiensis, indicating that it formed from a burst of hybridization between the parental species, with little subsequent backcrossing. However, analyses of genetic differentiation, clustering, and polymorphism based on molecular data also showed that P. appalachiensis is genetically distinct from both parental species. Population genetic simulations revealed P. appalachiensis to be much younger than the parental species, with unidirectional gene flow from P. glaucus and P. canadensis into P. appalachiensis. Finally, phylogenetic analyses, combined with ancestral state reconstruction, showed that the two traits that define P. appalachiensis' mosaic phenotype, obligatory pupal diapause and mimicry, evolved uniquely in P. canadensis and P. glaucus, respectively, and were then recombined through hybridization to form P. appalachiensis. These results suggest that natural selection and sex-linked traits may have played an important role in the origin and maintenance of P. appalachiensis as a hybrid species. In particular, ecological barriers associated with a steep thermal cline appear to maintain the distinct, mosaic genome of P. appalachiensis despite contact and occasional hybridization with both parental species

    Correction: Can public online databases serve as a source of phenotypic information for Cannabis genetic association studies?

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0247607.]

    Can public online databases serve as a source of phenotypic information for Cannabis genetic association studies?

    No full text
    The use of Cannabis is gaining greater social acceptance for its beneficial medicinal and recreational uses. With this acceptance has come new opportunities for crop management, selective breeding, and the potential for targeted genetic manipulation. However, as an agricultural product Cannabis lags far behind other domesticated plants in knowledge of the genes and genetic variation that influence plant traits of interest such as growth form and chemical composition. Despite this lack of information, there are substantial publicly available resources that document phenotypic traits believed to be associated with particular Cannabis varieties. Such databases could be a valuable resource for developing a greater understanding of genes underlying phenotypic variation if combined with appropriate genetic information. To test this potential, we collated phenotypic data from information available through multiple online databases. We then produced a Cannabis SNP database from 845 strains to examine genome wide associations in conjunction with our assembled phenotypic traits. Our goal was not to locate Cannabis-specific genetic variation that correlates with phenotypic variation as such, but rather to examine the potential utility of these databases more broadly for future, explicit genome wide association studies (GWAS), either in stand-alone analyses or to complement other types of data. For this reason, we examined a very broad array of phenotypic traits. In total, we performed 201 distinct association tests using web-derived phenotype data appended to 290 uniquely named Cannabis strains. Our results indicated that chemical phenotypes, such as tetrahydrocannabinol (THC) and cannabidiol (CBD) content, may have sufficiently high-quality information available through web-based sources to allow for genetic association inferences. In many cases, variation in chemical traits correlated with genetic variation in or near biologically reasonable candidate genes, including several not previously implicated in Cannabis chemical variation. As with chemical phenotypes, we found that publicly available data on growth traits such as height, area of growth, and floral yield may be precise enough for use in future association studies. In contrast, phenotypic information for subjective traits such as taste, physiological affect, neurological affect, and medicinal use appeared less reliable. These results are consistent with the high degree of subjectivity for such trait data found on internet databases, and suggest that future work on these important but less easily quantifiable characteristics of Cannabis may require dedicated, controlled phenotyping

    Genetic Analysis Reveals Strong Genetic analysis reveals strong phylogeographical divergences within the Scarlet Macaw Ara macao

    Get PDF
    Scarlet Macaws Ara macao have the largest geographical distribution of any Neotropical psittacine, occupying a variety of lowland forest habitats from Mexico to Brazil. Two subspecies, Ara macao macao and Ara macao cyanoptera, are currently recognized based on wing chord length and plumage coloration, with formal descriptions suggesting genetic introgression in southern Nicaragua and northern Costa Rica. The present study aimed to investigate the extent of genetic diversification within A. macao by analysing mitochondrial sequence data from contemporary and historical samples. Phylogenetic reconstruction and population aggregation analysis confirmed two distinct phylogeographical groups, with a high degree of intraspecific genetic structure and no evidence of a putative hybrid zone. Whole mitochondrial genome sequencing further confirmed substantial divergence (~ 1.8%) between the cyanoptera and macao lineages. These results demonstrate a separation of A. macao into two distinct evolutionary entities and highlight a non-uniform distribution of intraspecific diversity, suggesting current conservation designations may warrant re-evaluation

    Parallel Molecular Evolution in an Herbivore Community

    No full text
    This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 2, 2012): Updated information and services, including high-resolution figures, can be found in the online version of this article at
    corecore